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Turbulence modelling for separated ° ows
with anisotropy-resolving closures

By Michael A. Leschziner

Department of Engineering, Queen Mary,
University of London, London E1 4NS, UK

This paper discusses aspects of modelling turbulent ®ows, featuring curvature, im-
pingement and separation, with statistical second-moment closure and nonlinear
eddy-viscosity models. Both modelling approaches are ­ rst reviewed, with particular
emphasis placed on the illumination of some of the mechanisms by which the alter-
native model forms capture the interactions between particular types of strain and
the turbulence ­ eld. As part of the review, recent modelling developments, directed
especially towards the prediction of physically complex ®ows, are presented and dis-
cussed. Finally, the predictive performance of selected models is illustrated by way
of computational solutions and related comparisons with experimental data for ­ ve
®ows, three two dimensional and two three dimensional, all involving separation from
continuous surfaces.

Keywords: turbulent separated ° ow; turbulence modelling; turbulence anisotropy;
Reynolds-stress models; nonlinear eddy-viscosity models

1. Introduction

Recent advances in grid generation now allow the ®ow domain around a complete
aircraft to be covered with an unstructured mesh in a matter of one CPU hour
on a medium-power workstation. Corresponding progress in numerical approxima-
tion schemes, implicit solvers, multi-grid/multi-level acceleration, grid-to-®ow adap-
tation and parallel computing also permits highly accurate numerical solutions to be
obtained economically for some restricted groups of ®ows in which the accuracy of
the solution does not rely on closure models that approximate turbulence and asso-
ciated transport phenomena. Some high-speed, nearly inviscid aeronautical ®ows,
and a smaller number of turbomachine-blade ®ows in `design’ (low-load) conditions,
tend to fall into the above category. At the other extreme is the group of fundamen-
tally important turbulent or transitional ®ows at relatively low Reynolds numbers,
especially those near walls, which can now be fully resolved by direct numerical sim-
ulation (DNS). While DNS is far too costly for practical ®ows,y it allows insight to be
gained into the detailed physics of turbulence. It also provides accurate and highly
resolved statistical data, which have been extensively exploited in recent years for
turbulence-model construction, calibration and even validation.

y `A rough estimate, based on current algorithms and software, indicates that even with a supercom-
puter capable of performing 1012 Flops, it would take several thousand years [and 1016 grid points] to
compute the ®ow [around an aircraft] for one second of ®ight time’ (Moin & Kim 1997).
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The large majority of ®ows encountered in ®uids-engineering practice are, at least
in terms of ®ow physics, much more challenging than those mentioned above. The key
point of di¬erence is the combination of high Reynolds numbers, complex strain and
the large contribution of turbulence transport to the balance of processes dictating
the behaviour of the ®ow and hence the operational characteristics of the associated
engineering device. Turbulence is known to react sensitively, in terms of both its
intensity and structure, to a whole range of geometric and ®ow features, including
the proximity and orientation of walls, curvature, swirl, rotation, density gradients,
acceleration, separation and impingement. The level of di¯ culty rises dramatically
with the inclusion of heat and mass transfer, chemical reaction and multi-phase inter-
action. Here, too, it is turbulence that poses the main challenges, for the transport
of heat, species and phases is largely governed by turbulent mixing.

Practical ®ows are almost invariably computed by solving Reynolds-averagedy
versions of the equations of motion and transport in conjunction with turbulence
models. The latter feed into the former information on the magnitude of the turbu-
lent stresses, » uiuj , and ®uxes, » uk ¿ , that arise from the time-/ensemble-averaging
process. Any model, however complex, combines rational concepts with healthy mea-
sures of intuition and empiricism, the last derived from a calibration of the model
against experimental and/or DNS data for a small number of simple key ®ows. Large
eddy simulation (LES) is an evolving alternative, but is an expensive approach and
is faced with a number of problems associated with spatial ­ ltering, sub-grid-scale
modelling, near-wall resolution (especially in the semi-viscous sublayer), and high
sensitivity to grid quality (aspect ratio, skewness and spatial rate of expansion).

There are literally dozens of turbulence models, and these di¬er greatly in terms
of their origin, the underlying concepts and the route to their derivation and cal-
ibration, their mathematical complexity, their intended range of applicability and
their sensitivity to di¬erent ®ow features. To some extent, this proliferation re®ects
the omission of important generic mechanisms from the turbulence-model equations
prior to their closure: in general, the simpler a model is, the more of the fundamental
physics is excluded and the greater its reliance is on calibration, which inevitably
constrains the model’s generality. The application of such simple models to a broad
range of ®ows brings to light, as anticipated, weaknesses and defects (real as well as
false) that tend to be addressed by the addition of correction terms and functions
and the adjustment of numerical constants. This then gives rise to whole families of
models which are, in e¬ect, variants of related parent or `standard’ models. `Simple’
models are taken here to be those based on the linear stress{strain or Boussinesq rela-
tionships. More complex and potentially general modelling approaches are based on
second-moment closure and nonlinear eddy-viscosity formulations, and these are the
ones on which the present paper focuses in an e¬ort to indicate recent developments.

Numerous validation studies provide su¯ cient evidence to support the conclusion
that no single model, however complex and `general’, is able to return a wholly satis-
factory behaviour across even a major range of ®ow conditions. The key objective of
any turbulence-modelling e¬ort directed towards general ®ows is, however, to achieve
maximum applicability by minimizing the impact of closure approximations and by
retaining as many as possible of the rational and exact elements underpinning the
model. On the other hand, the more complex a model is, the more computationally

y Taken here to include time, ensemble and mass averaging.
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demanding it tends to be, due to a combination of increased mathematical complex-
ity and disadvantageous numerical properties arising from nonlinearity and inter-
equation coupling. Hence, turbulence modelling is often an exercise of compromise.

Assessing the validity of turbulence models by reference to experiments outside the
range of those used for model calibration is a crucial part of the modelling process as
a whole. This can be a di¯ cult exercise often fraught with uncertainties, even if con-
ducted within extensive and closely controlled collaborative e¬orts, which are com-
mon in Europe (see, for example, Haase et al . 1993, 1996). Principal issues a¬ecting
validation are numerical accuracy, grid density and disposition, accuracy and com-
pleteness of boundary conditions, accuracy of the experimental data, consistency of
the dimensionality of the computation with that of the experiment, wind-tunnel-
blockage e¬ects, choice of ®ow properties used for validation (e.g. global as opposed
to local) and, not to be ignored, blunders and coding errors. Boundary conditions
present particular problems, for they can rarely be extracted for all transported quan-
tities from the experimental data. Indeed, there are many instances in which a major
proportion of the boundary conditions needs to be estimated (almost guessed) on the
basis of reasonable physical considerations. Examples are the absence of ®ow inlet
conditions for turbulent correlations governed by transport equations, especially in
the context of second-moment closure, entrainment conditions along arti­ cial bound-
aries placed within the ®ow and far-­ eld boundaries surrounding aerofoils and wings.
In such cases, it is essential to place the computational boundaries at positions suf-
­ ciently far from the `active’ ®ow region of primary interest so as to minimize the
sensitivity of the ®ow in this region to changes in the boundary conditions. The
treatment of wall conditions is often a serious source of uncertainties, although these
do not strictly arise from the boundary conditions (zero slip and impermeability),
but rather from the manner in which the turbulence model accounts for the in®uence
of viscosity in the semi-viscous near-wall region.

Validating advanced, anisotropy-resolving models of the type reviewed herein poses
particular problems. Not only are these closures especially complex, in terms of their
mathematical structure, and numerically di¯ cult to implement, they also require
­ ner grids than those for simpler models, considerably greater CPU resources and
more extensive and better resolved experimental data and boundary conditions. A
further di¯ culty arises from the unavoidable lack of experience with any one of these
models due to the small number of groups involved in constructing and testing such
models. Experience shows that even large-scale collaborative studies tend to o¬er
only few opportunities to reliably cross-check the validity of the implementation of
any one particular model, especially if it is of a more complex type, by reference to
identical test-case speci­ cations.

In what follows, this paper reviews some recent developments in the area of second-
moment and nonlinear eddy-viscosity modelling, and presents selected solutions for
some challenging separated ®ows, which illustrate model performance and the prob-
lems encountered in e¬orts to derive de­ nitive conclusions.

2. Second-moment equations and implied stress{strain linkage

The large majority of models used in practical computational schemes for engineering
®ows are based on the linear `Boussinesq’ stress{strain relationships,

¡ uiuj = ¸ t
@Ui

@xj

+
@Uj

@xi
¡ 1

3
ukuk ¯ ij ; (2.1)
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in conjunction with the isotropic eddy viscosity, ¸ t, which is typically evaluated from
the turbulence energy k and its rate of dissipation " through c · k2=". These perform
well in thin shear ®ows in which the shear stress is the only dynamically important
component of the stress tensor, but often perform poorly in high curvature, separa-
tion, recirculation, impingement and swirl. Predictive defects repeatedly observed in
computations of complex ®ows include excessive shear stress, particularly in curved
shear layers and in the presence of adverse pressure gradient; suppression of separa-
tion along curved walls; grossly excessive levels of turbulence in regions of stagnation
and impingement; wrong response to swirl; insensitivity of turbulence transport to
density strati­ cation; grossly excessive heat transfer in reattachment regions; and
suppression of periodic motions induced by intrinsic instabilities (e.g. shedding from
blu¬ bodies). The cause of many (but not all) problems is that equation (2.1) gives
a seriously erroneous linkage between the stresses and strain components and fails
to represent the substantial di¬erence in directional alignment between the principal
stresses and strains.

The physically correct linkage between stresses and strains is implicit in the equa-
tions governing the evolution of the Reynolds stresses, which may be derived exactly
from the Navier{Stokes equations and their Reynolds-averaged form. Written sym-
bolically, the Reynolds-stress equations for incompressible ®ow are:

D uiuj

D t
= Pij + dij + © ij ¡ "ij ; (2.2)

where the left-hand side represents convection, and the four terms on the right-
hand side represent production, di¬usion, redistribution and dissipation, respectively.
Equation (2.2), when written in its full form, reveals the intricate interaction between
the stresses and the processes sustaining turbulence. It also provides a partial answer
to the question of why eddy-viscosity models (EVMs) are observed to return a cred-
ible representation of the mean ®ow in a fair number of ®ows, especially those which
fall into the category of thin shear ®ows. Thus, in the case of simple, two-dimensional
shear, the exact equation governing the shear stress is

D uv

D t
= ¡ v2

@U

@y
+

p

»

@u

@y
+

@v

@x
¡ @

@y
uv2 +

pu

»
¡ "12: (2.3)

This stress is the only one which has any relevance to the behaviour of the mean ®ow.
To a ­ rst approximation, it may be supposed that the shear stress is proportional to
its rate of generation multiplied by a turbulent time-scale:

¡ uv / v2
@U

@y

k

"
; (2.4)

which is consistent with the eddy-viscosity relation (2.1), the eddy-viscosity being a
constant times v2k=". However, this simple stress{strain linkage does not extend to
complex strain ­ elds and cannot be generalized in the form of (2.1) without serious
con®ict with reality. In particular, equation (2.1) implies that the eigenvectors of the
anisotropy tensor (uiuj=k ¡ 2

3
¯ ij) and the strain tensors are directionally aligned,

which is far from true in complex strain.
A key to understanding the relationship between stresses and strains and to iden-

tifying the origin of several phenomena that the eddy-viscosity concept is unable to
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represent is the exact stress-production terms arising in the stress-transport equa-
tions (2.2). In terms of Cartesian tensor notation, the stresses uiuj are produced at
a rate:

Pij = ¡ uiuk
@Uj

@xk
¡ ujuk

@Ui

@xk
: (2.5)

Since the level of generation has, as one would expect, a dominant in®uence on the
associated stresses, it follows that Pij is crucial to the resolution of stress anisotropy.
The importance of stress anisotropy to mean-­ eld characteristics emerges from con-
sidering the response of generation to particular strain or body-force types, each
viewed in isolation. This is done below for the examples of ®ow curvature, system
rotation and normal straining. Analogous arguments may be applied to swirl, heat
transfer and buoyancy, among others.

In two-dimensional ®ow, described either within a Cartesian framework or in terms
of streamline-oriented coordinates with radius of curvature R, the exact production
of the shear stress is given by

P12 = ¡ u2
2

@U1

@x2

¡ u2
1

@U2

@x1

;

or P12 = ¡ v2
r

@U ³

@R
+ (2u2

³ ¡ u2
r)

U ³

R
:

(2.6)

Streamwise curvature is essentially expressed by the secondary strain @U2=@x1 or
U ³ =R. In any shear layer, normal-stress anisotropy is high, since the only normal
stress generated by shear is that aligned with the streamwise direction. In a wall-
bounded shear layer, the wall-normal stress is only a small fraction (typically 25%)
of the one in the streamwise direction. It is thus evident that curvature strain in a
boundary layer has a disproportionately large in®uence on the level of shear-stress
production and, hence, on the shear stress itself. In the case of a boundary layer on a
convex wall, @U2=@x1 is negative, and the overall result is a considerable attenuation
in the shear stress. This attenuation is further accentuated by the fact that convex
curvature tends to reduce u2

2 relative to u2
1, because

P22 = ¡ 2u1u2
@U2

@x1

(2.7)

is negative. An eddy-viscosity model is clearly unable to capture the above interac-
tion, unless sensitized to curvature in an ad hoc manner by some form of a Richardson
number that involves the ratio (U ³ =R)=(@U ³ =@r) or a variation thereof.

System rotation gives rise to a body force which interacts with turbulence so as
to damp it in some parts of the ®ow and to amplify it in others, depending upon
the orientation (sign) of the strain relative to the rotation vector. This interaction is
particularly relevant to turbomachine aerodynamics. It may be shown that rotation
introduces into the Reynolds-stress-transport equations the additional exact body-
form term:

Fij = ¡ 2« p("ipququj + "jpqupui); (2.8)

where "ipq is the alternating third-rank unit tensor. In the simple case of a fully
developed ®ow in a channel rotating anticlockwise in orthogonal mode « p = « 3 = « ,
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relations (2.5) and (2.8) simplify to:

F22 + P22 = ¡ 4 « uv;

F11 + P11 = ¡ 2uv
@U

@y
+ 4 « uv;

F12 + P12 = ¡ v2
@U

@y
¡ 2« (u2 ¡ v2):

(2.9)

As the shear stress is negative on the pressure side (the shear strain being positive)
and positive on the suction side, (2.9) implies that rotation ampli­ es (destabilizes)
turbulence on the pressure side and damps it on the suction side, leading to an
asymmetric velocity pro­ le and higher level of skin friction on the former relative
to the latter. This is precisely in accord with experimental observation and DNS
data, and is a feature which no linear eddy-viscosity model is able to reproduce,
unless sensitized to rotation in an ad hoc fashion through, say, the Rossby number
« =(@U=@y).

Eddy-viscosity models (EVMs) have arisen from and have been calibrated by ref-
erence to ®ows which are strongly sheared. Applying these models to ®ows in which
compressive or extensive straining dominates tends to result in physically unrealistic
behaviour. To illustrate this fact, attention is directed towards the production of
turbulence energy Pk = 0:5(P11 + P22 + P33):

Pk = ¡ u2
1

@U1

@x1
¡ u2

2

@U2

@x2
¡ u1u2

@U1

@x2

+
@U2

@x1
: (2.10)

Substitution of equation (2.1) into equation (2.10) gives

Pk = ¸ tS
2; (2.11)

where S2 = SijSij : the autoproduct of the strain tensor. Because of the mass-
continuity constraint (in incompressible ®ow), the ­ rst two terms in equation (2.10),
involving the normal stresses as multipliers, counteract each other. In fact, the pro-
duction can easily become negative if the negative normal strain is multiplied by the
higher of the two normal stresses, with anisotropy being large. When the Boussinesq
stress{strain relations are used, however, as is done in (2.10), the production rate
becomes quadratic in the strain, and the correct linkage to the normal stresses and
strains is lost. Hence, eddy-viscosity models, which feature the turbulence-energy-
transport equation, tend to return excessive levels of energy and thus turbulence
di¬usion in the presence of strong compressive strains. A di¬erent perspective of the
same defect is o¬ered upon introducing a turbulence time-scale t0 and velocity scale
u0 and noting (say, from equation (2.5)) that the turbulence production is of the
order

Pk = O(u2
0St0); (2.12)

while, on dimensional grounds,

¸ t = O(u2
0t0): (2.13)

Thus, a combination of equations (2.13) and (2.11) and a comparison of the result
with equation (2.12) shows that the eddy-viscosity form (2.11) has the wrong (i.e.
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quadratic rather than linear) dependence on S. This has motivated several non-
standard eddy-viscosity proposals in which ¸ t is made to depend on S as 1=S, via
the coe¯ cient c · , a topic which will be considered in greater detail later.

There are many manifestations of the defect rooted in equation (2.11), among them
the suppression of separation from the leading edge of aerofoils and turbomachine
blades, the underestimation of separation from sharp corners or edges of obstacles on
which the ®ow impinges, and the prediction of seriously excessive wall heat transfer
at impingement points. Hence, the ability of a model to distinguish between the
e¬ects of shear and irrotational strain may be of crucial importance to the primary
operational characteristics of ®uid-®ow equipment.

3. Second-moment closure

The considerations in the previous section justify the claim that the most rational
approach to constructing a turbulence model intended to possess wide-ranging appli-
cability should proceed via the exact set (2.2), which is the basis of second-moment
closure. The term closure gives expression to the fact that di¬usion, redistribution
and dissipation need to be approximated, a process substantially aided in recent
years by a growing body of accurate and detailed DNS data (Spalart 1988; Spalart
& Baldwin 1989; Kim et al . 1987; Eggels et al . 1994; Le & Moin 1994).

With attention initially restricted to high-Re ®ow regions, applicable when the
turbulent Reynolds number exceeds O(100), stress di¬usion (which is rarely a domi-
nant process) is usually approximated by the generalized gradient di® usion hypothesis
(GGDH) of Daly & Harlow (1970):

dij =
@

@xk
csuku`

k

"

@uiuj

@x`
: (3.1)

More complex forms of (3.1) exist, but are not demonstrably superior (see, for exam-
ple, Demuren & Sarkar 1993) and have rarely been used. In the exact equations (2.2),
the dominant fragment is @(uiujuk)=@xk, with pressure di¬usion being sub-ordinate
(estimated by Lumley (1978) to be ca. 20%). Some attempts have thus been made to
determine the triple correlations from third-moment closure, but this has not gen-
erally been found to be a pro­ table route. One notable exception arises in highly
strati­ ed shear ®ows in which the di¬usion of stresses and ®uxes is extremely impor-
tant (see Craft et al . 1997a).

At high Reynolds numbers, dissipation is usually assumed to be isotropic, because
it occurs at eddy length-scales which tend to be very much smaller than the scales
of the large energetic eddies, which are sensitive to the mean strain (and hence to
its orientation), the ratio of the scales being of the order of Re3=4. Isotropy in the
dissipative scales implies:

"ij = 1
3
"¯ ij ; (3.2)

in which " is the dissipation rate of turbulence energy. This approximation is inad-
equate close to the wall, where length-scales are generally small and anisotropy is
large. Proposals have thus been made (in Launder & Tselepidakis (1993) and Hanjalíc
& Jakirlíc (1993), for example) to sensitize "ij , in an algebraic fashion, to invariants
of the stress anisotropy aij = (uiuj=k ¡ 2

3
¯ ij),

A2 = aijaij ; A3 = aijajkaki; A = 1 ¡ 9
8
(A2 ¡ A3); (3.3)
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or the dissipation anisotropy eij = ("ij=" ¡ 2
3
¯ ij),

E2 = eijeij ; E3 = eijejkeki; E = 1 ¡ 9
8
(E2 ¡ E3): (3.4)

From a physical point of view, A2, A3 and A may be related to structural features
of turbulence, especially its componentality. Thus, A = 1 identi­ es isotropic turbu-
lence (`spherical’ eddies), while A = 0 characterizes two-component turbulence (`®at’
eddies, say, near a wall or a sharp ®uid{®uid interface). Moreover, negative values
for A3 characterize `saucer’-shaped eddies, while positive values indicate `sausage’-
shaped structures. A model widely used to represents the anisotropic dissipation
is

"ij = 2
3
f" ¯ ij" + (1 ¡ f")" ¤

ij ; (3.5)

where " ¤
ij are the wall-limiting values of "ij , which can be obtained readily by kine-

matic arguments (Launder & Reynolds 1983). The `blending’ function f" varies from
model to model|there are at least ­ ve forms (see Hanjalíc 1994)|and its sub-
jects are A and/or E and/or Ret. Apart from securing the correct wall-limiting
behaviour of "ij and introducing shear-stress dissipation, equation (3.5) also ensures
that dissipation of the wall-normal intensity is `shut o¬’ as turbulence approaches the
two-component near-wall limit. This is an important element of any model designed
to satisfy realizability, a property which includes the unconditional satisfaction of
u2

¬ > 0 (with ¬ denoting the principal directions).
Alongside dissipation, the redistribution or `pressure{strain’ term © ij presents the

modeller with the biggest challenge in the context of second-moment closure. This
term vanishes upon the contraction k = 1

2
uiuj ¯ ij (strictly, in incompressible ®ow

only) and thus becomes irrelevant in closures based on the turbulence energy or a
surrogate scalar. In second-moment closure, however, this term controls the redis-
tribution of turbulence energy among the normal stresses|a process driving turbu-
lence towards a state of isotropy|as well as the reduction in the shear stresses in
harmony with the isotropization process. It only requires reference to equation (2.4)
to appreciate that the correct resolution of the individual normal stresses is of cru-
cial importance in the context of second-moment closure. In simple shear ®ow, to
which equation (2.4) pertains, the shear stress is clearly directly proportional to the
transverse normal stress v2, a stress which is not generated in simple shear, but is
only ­ nite because of the redistribution process e¬ected by © ij .

It can be shown analytically that the redistribution process consists of two major
constituents, one involving an interaction between turbulent quantities only ( © ij;1

and termed slow ) and the other involving an interaction between mean strain and
turbulence ®uctuations ( © ij;2 and termed rapid). This fact has led most modellers
to make separate proposals for these two fragments. The simplest proposal forms,
used for most complex-®ow computations, are the linear relations by Rotta (1951)
and Gibson & Launder (1978), respectively:

© ij;1 =
¡ c1"

k
(uiuj ¡ 1

3
¯ ijukuk);

© ij;2 = ¡ c2(Pij ¡ 1
3
¯ ijPkk):

(3.6)

Fu et al . (1987b) have shown, by reference to swirling ®ow, that the above form of
© ij;2 is not frame invariant, but that invariance is assured if the body-force-related
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production terms Fij and the convection tensor are included to give the form:

© ij;2 = ¡ c2([Pij + Fij ¡ 1
3
¯ ij(Pkk + Fkk)] ¡ (Cij ¡ 1

3
¯ ijCkk)): (3.7)

Although this combined `linear’ model satis­ es the basic requirement of steering tur-
bulence towards isotropy, the isotropization process is far too intense at the high
levels of anisotropy prevailing near the wall or free liquid surface. As the wall is
approached, turbulence tends towards a two-dimensional state (A = 0), and redistri-
bution must vanish to allow this state to be achieved. By intensifying the isotropiza-
tion process as the wall is approached, the linear model does not merely fail to
represent the physical process correctly, but can lead to one of the principal normal
stresses becoming negative, a condition violating realizability.

Correcting the above weakness, within the linear framework, relies on the intro-
duction of elaborate and in®uential ad hoc terms (Shir 1973; Gibson & Launder
1978; Craft & Launder 1992), which counteract the isotropization process in propor-
tion to the distance from the wall, normalized by the turbulent length-scale k3=2=".
For example, for a shear layer along a single horizontal wall, the correction terms
damping the linear isotropization of the wall-normal stress v2 are:

© w
22;1 = ¡ cw

1

4

3

"

k
v2

k1:5="

c
¡3=4
· µy

;

© w
22;2 = 2cw

2 (P22 ¡ 2
3
Pk)

k1:5="

C
¡3=4
· µy

:

(3.8)

In addition, the redistribution process needs to be sensitized to inhomogeneity, asso-
ciated with large strain gradients, and to anisotropy invariants, especially in low-Re
forms which allow the model to be used down to the wall (So et al . 1991; Launder
& Shima 1989; Ince et al . 1994; Jakirlíc & Hanjalíc 1995; Craft & Launder 1996).
An example of the latter practice is that of Jakirlíc & Hanjalíc (1995) who made
extensive use of DNS data to calibrate their linear low-Re model and use

c1 = 2:5A[min(0:6; A2)]1=4f +
p

AE2;

c2 = 0:8A1=2;
(3.9)

where f is a function of the turbulent Reynolds number Ret. Similarly, cw
1 and cw

2

are sensitized to A, A2 and Ret.
An alternative, recently proposed by Durbin (1993), introduces an elliptic relax-

ation equation of the form

L2r2
¿ c

ij

k
¡

¿ c
ij

k
=

¿ ij

k
; (3.10)

where ¿ c
ij is the wall-corrected form of the standard (uncorrected) ¿ ij , L is the

turbulence length-scale and r2 is the elliptic operator. Equation (3.10) steers ¿ ij

towards the correct wall values, prescribed as boundary conditions for ¿ c
ij .

From a fundamental point of view, as well as on practical grounds, the use of
wall corrections is unsatisfactory, not only because of their non-general nature, but
also because they rely heavily on the wall distance (y in equation (3.8)). The latter
is especially disadvantageous in complex geometries, where the in®uence of more
than one wall needs to be taken into account, and when general non-orthogonal
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Figure 1. Temporal variations of Reynolds stresses when isotropic turbulence is subjected to
homogeneous strain: (a) shear and (b) plane strain ( H̀J’ denotes Jakirli¶c & Hanjali¶c (1995);
M̀CL’ denotes (modi¯ed) Craft & Launder (1996)).

numerical grids are used. Hence, much of the recent fundamental research in the
area of turbulence modelling has been concerned with the construction of nonlinear
pressure{strain models that satisfy the realizability constraints and do not require
wall corrections. Nonlinear models or variants have been proposed by Shih & Lumley
(1985), Fu et al . (1987a) and Speziale et al . (1991), Launder & Tselepidakis (1993),
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Figure 1. (Cont.) (c) Axisymmetric contraction and (d) axisymmetric expansion.

Craft & Launder (1996), Craft (1998) and Batten et al . (1999), the last four being
extensions of Fu et al .’s model and the very last being a compressibility-generalized
variant suitable for shock-a¬ected ®ows. The models di¬er in detail and in respect
of the order of terms included, but all have arisen from the common approach of
proposing nonlinear expansions, in terms of components of the Reynolds-stress tensor
uiuj (or rather the anisotropy tensor, aij = (uiuj=k ¡ 2

3
¯ ij)) to second- and fourth-

rank tensors that arise in the most general ansatz for the pressure{strain term prior
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to its approximation:

© ij = "Aij(aij) + kMijk`(aij)
@Uk

@x`

; (3.11)

in which the two groups of terms correspond, respectively, to © ij;1 and © ij;2. The
coe¯ cients of the various terms in the expansions for Aij and Mijkl (in terms of
aij) are then determined by imposing necessary kinematic constraints (continuity,
symmetry, etc.). Realizability is introduced into some model forms by sensitizing the
pressure{strain model to invariants of the stress anisotropy. For example, the model
of Speziale et al . (1991) involves a quadratic form of © ij;1, the linear fragment of
which is premultiplied by the coe¯ cient

c1 = 1 + 3:1(A2A)1=2: (3.12)

The most elaborate model is that of Craft & Launder (1996) and is quadratic in © ij;1

and cubic in © ij;2, the latter containing six distinct groups of terms and associated
coe¯ cients. This model has recently been modi­ ed by Batten et al . (1999) to apply
to shock-a¬ected ®ows, in view of experience which had revealed that the parent
form responds incorrectly to shocks.

The intrinsic predictive quality of the above, most elaborate, framework is re®ected
by its ability to represent the response of turbulence to di¬erent types of strain.
This is conveyed by ­ gures 1 and 2, taken from Batten et al . (1999). The for-
mer gives temporal variations (S ¤ representing the non-dimensional strain rate) of
stresses when isotropic turbulence is subjected to homogeneous shear, plain strain,
axisymmetric contraction and axisymmetric expansion. The ­ gure includes two sets
of solutions, one obtained with the modi­ ed form (Batten et al . 1999) of the cubic
model of Craft & Launder (1996) and the other with the linear model of Jakirlíc
& Hanjalíc (1995). Predicted variations are compared with DNS data by Mat-
sumoto et al . (1991). Figure 2 shows analogous comparisons with DNS data of Lee
& Reynolds (1985) for near-wall stress pro­ les in a channel ®ow at a Reynolds num-
ber, based on friction velocity and channel height, of 180 (the mean Reynolds num-
ber being about 5000). Although these strain conditions are far from those encoun-
tered in practice, they nevertheless demonstrate the ability of second-moment clo-
sure to return key characteristics of strained turbulence, and this is, arguably, a
prerequisite for a general applicability of any model across a broad range of strain
types.

It must be acknowledged that the above cubic forms continue to rely on wall cor-
rections (or inhomogeneity terms), albeit much weaker than those associated with the
linear models. To at least avoid reliance on the wall distance, e¬orts have thus been
made to replace the wall-distance parameter in equation (3.8) by local turbulence-
structure parameters which indicate the wall proximity by implication. Examples for
such parameters are those proposed by Craft & Launder (1996) and Jakirlíc (1997),

fw =
1

cl

@l

@xn
or fw =

1

cl

@A1=2l

@xn
; (3.13)

where cl = c
¡3=4
· µ, l = k3=2=".

Determining the dissipation rate " (and, hence, "ij) is another challenge in the
context of second-moment closure. With few exceptions, " is determined from a sin-
gle transport equation representing, rather intuitively, a balance between transport,
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Figure 2. Pro¯les of Reynolds stresses across half a fully developed channel ° ow at Re ½ = 180
predicted with second-moment closures (see caption of ¯gure 1 for model designations).

generation and destruction of dissipation:

@» Uk"

@xk
=

@

@xk
» ct

uku`

"
k

@"

@x`

+ 0:5 »
"

k
c"1Pkk ¡ » c"2

"2

k
+ S"; (3.14)

in which S" is a model-dependent source-like term containing speci­ c corrections and
terms associated with the in®uence of viscosity on dissipation. Apart from associating
the dissipation process with the single macro-length-scale k3=2=", the above equation
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suggests only a very weak sensitivity of dissipation to the structure of turbulence. As
turbulence anisotropy increases, especially at walls, the normal components of the
dissipation tensor become anisotropic (as expressed by equation (3.5)). A proposal
sensitizing the scalar dissipation rate to anisotropy is that of Haroutunian et al .
(1988), in which c"1 = 1:44 and c"2 = 1:92 are replaced by

c"1 = 1; c"2 =
1:92

(1 + 0:7AA
1=2
2 )

: (3.15)

An apparently intractable defect of the dissipation-rate equation is that it returns
excessive levels of turbulent length-scale in boundary layers subjected to adverse
pressure gradient. Among other problems, this property results in excessive near-
wall shear stress and hence inappropriate suppression of separation from continuous
surfaces. This defect is common to both two-equation eddy-viscosity modelsy and
Reynolds-stress models. Within the former framework, Lien & Leschziner (1995)
have introduced constraints which, as the wall is approached, drive the length-scale
towards the value prescribed algebraically as part of the one-equation model of Norris
& Reynolds (1975). However, in most model forms and applications the defect is
addressed by introducing, via S" in equation (3.14), some variant of the ad hoc
correction of Yap (1987), which forces the " equation to return a length-scale close
to the local equilibrium value. An example is the recent variant of Jakirlíc & Hanjalíc
(1995):

S" = max
1

cl

@l

@xn

2

¡ 1
1

cl

@l

@xn

2

; 0 A
"~"

k
; (3.16)

in which ~" is the homogeneous part of the dissipation ".
Little has been said so far about accommodating the e¬ects of viscosity in the

context of low-Re modelling. Most recent models, among them those of Launder &
Tselepidakis (1993), So et al . (1991), Launder & Shima (1989), Jakirlíc & Hanjalíc
(1995) and Craft & Launder (1996), are low-Re variants, allowing an integration
through the viscous sublayer. This is an area in which much reliance is placed on
recent DNS data for near-wall ®ows. In essence, di¬erent model elements, especially
the dissipation equation (via c"1, c"2 and S"), are sensitized to viscosity by way of
damping functions with subjects being forms of the turbulent Reynolds number. As
the near-wall structure is substantially a¬ected by both inertial and viscous damping,
the former provoking strong anisotropy via pressure re®ections, low-Re extensions
involve a functionalization on anisotropy invariants (3.3) as well as viscosity, each
expressing a di¬erent physical process. The dissipation invariants (3.4) can also be
used, as has been done by Jakirlíc & Hanjalíc (1995). Because the functionalization
process is non-rigorous, essentially aiming to make the model return a phenomeno-
logical behaviour consistent with experimental or DNS data, there is a considerable
amount of ambiguity in extending models to low-Re conditions, and thus each model
features its own individual sets of functions derived along di¬erent routes. Such
extensions are not, therefore, considered in detail here.

Although low-Re second-moment closure models are beginning to be applied to
quite complex two-dimensional and even three-dimensional ®ows, the desire for rela-

y It can be materially alleviated, however, by a replacement of the " equation by an analogous equation
for the turbulent vorticity ! (see, for example, Wilcox 1994).
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tive simplicity and the uncertainties associated with near-wall modelling have encour-
aged the application of somewhat `simpler’ hybrid models which combine high-Re
second-moment closure with low-Re EVMs, the latter applied to the viscous near-
wall layer (Lien & Leschziner 1993, 1995), or even with wall functions (Lien 1992;
Leschziner & Ince 1995; Jakirlíc 1997). Justi­ cation, especially for the former option,
is provided by the observation that stress transport is usually unin®uential very close
to the wall and that the principal function of the near-wall model is to provide the
correct level of the shear stress and wall-normal heat ®ux.

4. Nonlinear eddy-viscosity models

Second-moment closure has compelling fundamental merits, as well as yielding real
predictive bene­ ts in complex two-dimensional and three-dimensional ®ows. On the
other hand, it is mathematically elaborate, numerically challenging and (often) com-
putationally expensive, all regarded as important limitations in the context of indus-
trial CFD. This has thus motivated e¬orts to construct models which combine the
simplicity of the eddy-viscosity formulation with the superior fundamental strength
and predictive properties of second-moment closure. These e¬orts have given rise to
the group of nonlinear eddy-viscosity models (NLEVMs).

NLEVMs can be traced back to early work by Rivlin (1957), leaning on simi-
larities between the laminar ®ow of a non-Newtonian ®uid and the turbulent ®ow
of a Newtonian ®uid, and Pope’s (1975) observation that Rodi’s (1976) algebraic
approximation of the Reynolds-stress-transport model of Launder et al . (1975) can
be arranged in the explicit form

aij = G ¶ T ¶
ij ; (4.1)

where Tij is a tensorial power expansion in the strain and vorticity tensors,

Sij ² 1

2

@Ui

@xj

+
@Uj

@xi
; « ij ² 1

2

@Ui

@xj
¡ @Uj

@xi
; (4.2)

while G ¶ are coe¯ cients which are functions of vorticity and strain invariants. A ­ rst
generation of quadratic models emerged through contributions by Sa¬man (1977),
Wilcox & Rubesin (1980) and Speziale (1987). In Speziale’s model, for example, the
coe¯ cients G ¶ were simply taken to be powers of the time-scale k=" so as to achieve
dimensional consistency. Since then, a number of models of various complexity and
derived along quite di¬erent routes have emerged (Yoshizawa 1987; Shih et al . 1993;
Rubinstein & Barton 1990; Gatski & Speziale 1993; Craft et al . 1997b; Lien & Durbin
1996; Lien et al . 1996; Taulbee et al . 1993; Wallin & Johansson 1997; Apsley &
Leschziner 1998). Most models are quadratic, while those of Craft et al ., Lien et
al . and Apsley & Leschziner are cubic and that of Gatski & Speziale is quartic.
These di¬erences in order are of considerable signi­ cance. In particular, the cubic
fragments play an essential role in capturing the strong e¬ects of curvature on the
Reynolds stresses. As regards model origin and derivation, an important distinction
arises from the fact that some models (those of Shih et al ., Lien et al . and Craft et
al ., for example) start from a general series-expansion of the Reynolds-stress tensor
in terms of strain and vorticity tensors, while others (those of Gatski & Speziale,
Apsley & Leschziner, Taulbee et al . and Wallin & Johansson) start from an algebraic
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Reynolds-stress model. Other routes involve the direct interaction approximation
adopted by Yoshizawa and the renormalization group (RNG) approach taken by
Rubinstein & Barton. Most models use constitutive equations which are functions of
two turbulence scales (usually k and ") as well as strain and vorticity invariants. In
contrast, one variant of Craft et al .’s cubic model makes use of a transport equation
for the stress invariant A2 = aijaij , while Lien & Durbin’s quadratic model depends
on the Reynolds stress normal to the streamlines, which is also obtained from a
related transport equation.

To a degree, the multiplicity of the NLEVMs published in the literature is indica-
tive of the loss of rigour inherent in moving away from the complete second-moment
framework towards a simpler closure level, which necessarily involves more empiri-
cal input and greater intuitive content. Clearly, the critical question is whether the
simpli­ cation is justi­ ed in terms of the predictive performance which nonlinear for-
mulations return relative to linear models and second-moment closure. This question
cannot be answered categorically, at present, because of insu¯ cient evidence and the
diversity of models, each displaying individual predictive characteristics.

Although the rational foundation and derivation of di¬erent models can di¬er
greatly, the stress{strain/vorticity constitutive relationship for the quadratic or cubic
models to be considered in this paper can be written (for incompressible ®ow) in the
following canonical form:

aij = ¡ 2c ·
k

~"
Sij + c1

k2

~"2
(SikSjk ¡ 1

3
SklSkl ¯ ij) + c2

k2

~"2
(Sik « jk + Sjk « ik)

+ c3
k2

~"2
( « ik « jk ¡ 1

3
« kl « kl ¯ ij) + c4

k3

~"3
(Sik « jl + Sjk « il)Skl

+ c5
k3

~"3
( « ik « klSlj + « jk « klSli ¡ 2

3
« klSlm « mk ¯ ij)

+ c6
k3

~"3
SklSklSij + c7

k3

~"3
« kl « klSij : (4.3)

This expression, which is either the starting point of a nonlinear model or the out-
come of certain simpli­ cations introduced into the Reynolds-stress equations, satis­ es
all requisite symmetry and contraction properties in incompressible ®ow. It admits
models, such as that of Craft et al . (1997b), where a distinction is made between
dissipation rate " and its homogeneous part " ¡ 2v(@k1=2=@y)2. For most models to
be considered here, no such distinction is made.

The mechanism by which NLEVMs represent anisotropy emerges upon consider-
ing simple two-dimensional shear in the (x1; x2)-plane, in which ¼ = (k=")(@U=@y)
characterizes the strain, for which equation (4.3) yields:

a11 = 1
12

(c1 + 6c2 + c3) ¼ 2;

a22 = 1
12

(c1 ¡ 6c2 + c3) ¼ 2;

a33 = ¡ 1
6
(c1 + c3) ¼ 2;

a12 = ¡ c · ¼ + 1
4
(c6 + c7 ¡ c5) ¼ 3:

(4.4)

This demonstrates that the quadratic terms are responsible for the ability of non-
linear models to capture anisotropy: without these, u2

¬ = 2
3
k, for ¬ = 1; 2; 3. Also,

by establishing a link between the normal stresses and the shear strain, relations

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Separated ° ows with anisotropy-resolving closures 3263

6.0
(c)

4.0

2.0

6.0
(b)

4.0

2.0

0 1.00.6 0.8

AL
WR
DNS

CLS
SZL k– e

DNSDNS

0.4
Y (m)

Y (m)Y (m)

v2+
 w

2+
 u

2+

v2+
 w

2+
 u

2+

6.0
(a)

4.0

2.0v2+
 w

2+
 u

2+

0.2

0 1.00.6 0.80.40.20 1.00.6 0.80.40.2

Figure 3. Pro¯les of Reynolds stresses across half a fully developed channel ° ow at Re ½ = 180
predicted with nonlinear eddy-viscosity models. WR denotes Wilcox & Rubesin (1980); CLS
denotes Craft et al . (1997b); SZL denotes Shih et al . (1993); AL denotes Apsley & Leschziner
(1998); k{° denotes the linear EVM.

Table 1. Equilibrium values of non-dimensional anisotropy and
shear stress for homogeneous turbulent shear ° ow

a11 ; 1 a12 ; 1 a22 ; 1 a33 ; 1 (Sk=")1

experiment 0.403 ¡0:284 ¡0:295 ¡0:108 6.08

linear k{" EVM 0 ¡0:434 0 0 4.82

WR 0.3 ¡0:434 ¡0:3 0 4.82

SZL 0.313 ¡0:318 ¡0:19 ¡0:112 6.56

CLS 0.53 ¡0:273 ¡0:307 ¡0:223 7.66

AL 0.449 ¡0:276 ¡0:353 ¡0:095 6.81

(4.4) are, qualitatively, compatible with statements derived from the Reynolds-stress
equations. However, the predictive quality with which any particular nonlinear model
resolves anisotropy depends signi­ cantly on the calibration of the model’s coe¯ cients.
This is demonstrated in ­ gure 3, taken from Loyau et al . (1998), which compares
levels of normal-stress anisotropy predicted by the nonlinear models of Wilcox &
Rubesin (1980), Craft et al . (1997b), Shih et al . (1993) and Apsley & Leschziner
(1998) with DNS data for channel ®ow by Kim et al . (1987). Table 1, also taken
from Loyau et al . (1998), shows the equilibrium values of the deviatoric normal
stresses and the shear stress when isotropic turbulence is subjected to homogeneous
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Figure 4. Velocity pro¯les in fully developed curved channel ° ow predicted by two cubic
eddy-viscosity models in comparison with the linear k{° model.

shear for a long period of time. Predicted values are compared with experimental
data by Tavoularis & Corrsin (1981).

The mechanism by which curvature e¬ects are represented transpires from a con-
sideration of the shear stress in two-dimensional shear. Assuming that c6 +c7 ¡ c5 = 0
(so that the cubic terms play no role in simple shear), relations (4.3) give:

a12 = ¡ 2[c· + 1
4
(c7 ¡ c5)( ~S2 ¡ ~« 2)](k=")S12; (4.5)

where

~S = (k=") 2SijSij ; ~« = (k=") 2 « ij « ij : (4.6)

Result (4.5) highlights the fact that (some of) the cubic fragments can be assimilated
into the linear term, and this allows the e¬ects of curvature to be brought out most
clearly. Thus, if c7 ¡ c5 is chosen positive, the shear stress will increase when ~S2 ¡
~« 2 > 0 and will decrease when ~S2 ¡ ~« 2 < 0. This e¬ect is illustrated in ­ gure 4,
which compares the velocity pro­ les predicted by the cubic models of Lien et al .
(1996) and Craft et al . (1997b) relative to a solution from a linear k{" model and
experimental data of Ellis & Joubert (1974). The e¬ect is qualitatively equivalent to
that predicted by the Reynolds-stress transport equations, although, in that case, the
sensitivity is brought about by a direct interaction between normal-stress anisotropy
and curvature strain, via the stress-generation terms.

There are other consequences that may be derived directly from the canonical
form of equation (4.3). Firstly, in two-dimensional ®ow, the quadratic terms (those
multiplied by coe¯ cients c1, c2 and c3) have no direct e¬ect on turbulence-energy
production. Secondly, again in two-dimensional conditions, the cubic term associated
with c4 vanishes, while the remaining cubic terms are proportional to the mean strain
tensor.

Although all cubic models are based on equation (4.3), they di¬er substantially in
detail, especially in respect of the determination of the coe¯ cients c · and c1 to c7

and the forms of the dissipation equation. Speci­ cally, one of the two models of Craft
et al . (1997b) sensitizes the coe¯ cients to A2, which is determined from a related
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Figure 5. Variation of the eddy-viscosity coe± cient c· for di® erent nonlinear eddy-viscosity
model and Menter’ s (1994) SST model, as a function of the strain rate ¼ = k=° (@U=@y) in
homogeneous shear (standard value for linear EVMs is 0.09).

transport equation derived from second-moment closure. Of particular importance
is the form of c · . In the context of linear two-equation eddy-viscosity models, this
coe¯ cient normally takes the value 0.09 (corresponding to uv=k = 0:3 in equilib-
rium shear). However, as pointed out earlier in relation to the response of linear
eddy-viscosity models to normal straining, by reference to equations (2.11){(2.13),
a constant value of c · gives the wrong response to normal straining. Rather, it was
argued that c · should be proportional to 1=S. Because the production rate of tur-
bulence energy is not sensitive to the quadratic terms, which allow nonlinear models
to represent anisotropy, a similar dependence of c · on S is also required in nonlinear
models. Figure 5, taken from Loyau et al . (1998), shows variations of c · with the
non-dimensional strain in simple shear, k="(@U=@y), built into three nonlinear mod-
els (AL denotes Apsley & Leschziner (1998) and CLS denotes Craft et al . (1997b)).
As seen, all three models incorporate a similar functional dependence, especially at
strain rates exceeding the equilibrium value. In most model variants, c · is sensi-
tized to the strain and vorticity invariants, so as to avoid the excessive generation
of turbulence energy in stagnation ®ow. In turbomachine blades, for example, this
dependence is crucially important for the prediction of boundary-layer transition,
especially on the suction side, following the impingement of the highly turbulent
upstream ®ow on the blade’s leading edge.y

y Of course, the manner in which the transition process itself is modelled, especially in o¬-design
conditions in which impingement is often followed by laminar leading-edge separation and turbulent
reattachment, is at least of equal importance.
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5. Model performance

There must be close to 100 ®ows which have been subjects of investigations with
second-moment and nonlinear eddy-viscosity models, principally in order to evaluate
the models’ predictive performance characteristics. Most of these ®ows are (nomi-
nally) two-dimensional, some are swirling and many are attached. Arguably, amongst
the most challenging ®ows are those in which separation occurs from a continuous
surface. Five such cases are considered here: a two-dimensional ®ow in an asymmetric
plane di¬user (Obi et al . 1993), a two-dimensional ®ow over a compressor-cascade
blade (Zierke & Deutsch 1989), a three-dimensional ®ow around a prolate spheroid
(Meier et al . 1984), a two-dimensional transonic ®ow over a circular bump (Bachalo
& Johnson 1986), and a three-dimensional transonic ®ow around a ­ n{®at-plate
junction (Barberis & Molton 1995). These must su¯ ce, within the space available,
to indicate basic model performance and to give examples of the di¯ culties encoun-
tered in arriving at secure conclusions.

(a) Di® user

The asymmetric di¬user involves separation from the inclined plane wall and reat-
tachment in the constant-area duct following the expansion. This case has been
speci­ cally designed for validation and o¬ers accurate and well-resolved mean-®ow
and turbulence data for well-controlled two-dimensional conditions. Importantly, it
includes detailed data well removed from the di¬user section, allowing boundary
conditions to be prescribed with a high level of con­ dence. The di¬user length is 21
times the upstream channel height H , and the overall expansion ratio is 4.7. The
Reynolds number based on upstream-channel conditions is 21 200. Following grid-
independence studies, the ®ow was computed with a second-order total variation
diminishing (TVD) scheme and a 272 £ 82 grid, extending 11H and 40H upstream
and downstream of the di¬user section, respectively. The y + value along the gridline
closest to the wall was below 1 throughout. Results presented here have been taken
from studies by Apsley et al . (1997) and Apsley & Leschziner (1998).

Figure 6 shows the development of the streamwise mean velocity pro­ le along
the di¬user. Results have been included for one linear and two cubic low-Re eddy-
viscosity models and the Reynolds-stress-transport model of Speziale et al . (1991),
with the near-wall sublayer resolved by the one-equation model of Norris & Reynolds
(1975). The linear EVM predicts a symmetric mean-velocity pro­ le across the di¬user
and near-isotropy amongst the normal-stress components (not shown). The addition
of quadratic terms, as done by Speziale et al . (1991), distinguishes the individual
normal stresses, but fails to improve the mean-velocity predictions signi­ cantly. In
contrast, the cubic model of Apsley & Leschziner (1998), which combines (S; « )-
dependent coe¯ cients and nonlinear terms in the stress{strain relationship, provides
a satisfactory prediction of cross-channel asymmetry, close to that achieved with the
second-moment model. Good agreement is also returned in respect of normal and
shear stresses, which are not included here.

(b) Double-circular-arc (DCA) blade

The DCA blade is formed by two circular arcs, joined by rounded, but thin, leading
and trailing edges. The ®ow enters the blade passage at an angle that departs by
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Figure 6. Streamwise velocity pro¯les in an asymmetric di® user predicted with a
linear EVM, two nonlinear EVMs and a second-moment model.

1.5¯ from the design value. This case, while disadvantageous in operational terms, is
interesting in the context of turbulence modelling, as the ®ow on the blade’s suction
side is subjected to high levels of surface curvature and adverse pressure gradient.
This results in a rapid growth of the suction-side boundary layer, leading to a large
separation region towards the trailing edge and a strong interaction between the
boundary layer and the passage ®ow. Unlike many other turbomachine-blade ®ows,
the present case is not strongly in®uenced by transition. Thus, on the all-important
suction side, transition occurs very close to the leading edge, possibly induced by a
tiny leading-edge separation bubble. However, in the pressure-side boundary layer,
which is subjected to acceleration and is thus thin and far less interesting than its
suction-side counterpart, transition occurs at around 40% of chord.

The computational solutions presented here were obtained by Chen & Leschziner
(1999) on a multi-block grid containing close to 50 000 nodes, with the linear
EVM of Launder & Sharma (1974), the NLEVM of Craft et al . (1997b) and the
second-moment closure of Gibson & Launder (1978), the last used in conjunction
with the NLEVM to bridge the semi-viscous sublayer close to the wall. Figure 7
presents surface-pressure distributions, suction-side velocity pro­ les and distributions
of boundary-layer displacement thickness. The existence of separation is implied by
the pressure plateau located between ca. 80% of the chord and the trailing edge.
Only the second-moment closure returns a credible prediction of the separation pro-
cess, and this re®ects its greater sensitivity to streamline curvature and the lower
level of mixing it predicts in the boundary layer in the presence of adverse pressure
gradient. The velocity pro­ les close to the leading edge indicate that neither the
second-moment closure nor the linear EVM captures the transitional state of the
leading-edge ®ow. However, as stated earlier, this is not a crucially important issue
in this ®ow. As the ®ow progresses beyond the immediate leading-edge region, the
linear model predicts an excessively turbulent boundary layer which is not su¯ ciently
sensitive to adverse pressure gradient and which therefore remains attached. In con-
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EVM and a second-moment model; (a) surface pressure, (b) suction-side streamwise velocity;
(c) boundary-layer displacement thickness.

trast, the boundary layer returned by the second-moment closure grows rapidly, in
accordance with experiment, and eventually separates at ca. 80% of the chord. As
regards the NLEVM, despite the use of the elaborate stress{strain relation, the model
fails to capture the trailing-edge separation, returning results which are no better
than the linear model in the trailing-edge region. However, the root of its failure
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is di¬erent from that of the linear EVM, being a consequence of an overestima-
tion of the leading-edge separation bubble. In the experiment, the boundary layer
reattaches in a fully turbulent state at 3% of the chord. In contrast, the predicted
boundary layer reattaches just upstream of the ­ rst measurement section at 7.3%.
This results in a serious underestimation of the initial displacement thickness and
turbulence intensity. With the wrong initial pro­ les, there arises a wrong response
of the boundary layer to the pressure ­ eld further downstream. Although the non-
linear model is sensitive to streamline curvature, by virtue of its cubic fragments,
this sensitivity is perhaps insu¯ ciently strong, and may be a contributory factor in
the model’s failure. The superior performance of the second-moment closure, relative
to the other two models, is brought out especially well by the distributions of the
displacement thickness.

(c) Prolate spheroid

This is a ®ow around an elliptical body of revolution of axes ratio of 6:1 and inclined
at 10¯ and 30¯ to an oncoming uniform stream. The geometry represents the group
of external ®ows around streamlined bodies, which feature vortical separation that
arises from an oblique `collision’ and subsequent separation of boundary layers from
the body’s leeward side. Of the two ®ows, that at 30¯ and Re = 6:5 £ 106 (based on
chord) is much more challenging, but poses signi­ cant uncertainties due to a complex
pattern of natural transition on the windward surface. Computations for both 10¯

and 30¯ incidence were performed by Lien & Leschziner (1996, 1997) with the low-Re
linear EVM of Lien & Leschziner (1994), a low-Re adaptation of Shih et al .’s (1993)
quadratic EVM, and the second-moment closure of Gibson & Launder (1978), the
last coupled to the above linear EVM in the viscous sublayer. A second-order TVD
scheme was used on a high-quality conformal mesh of 98£82£66 nodes, with the y +

value closest to the wall being kept to 0.5{1 across the entire surface. Although this
mesh resolves most properties adequately, test calculations with a nonlinear EVM
on a 1283 grid have shown the skin friction to change slightly with grid re­ nement.

Figure 8 contains comparisons for skin-friction lines on the unwrapped spheroid
surface, one azimuthal pressure distribution, one distribution of skin-friction direc-
tion and one velocity ­ eld, the last showing the leeward separation and the associated
transverse vortex. In general, the NLEVM and the second-moment closure give sim-
ilar results that are closer to the experiments than those obtained with the linear
EVM. However, the improvement is not dramatic, and the uncertainties associated
with transition do not warrant a de­ nitive statement on model performance in this
very complex case.

(d ) Circular bump

This geometry consists of a solid cylinder with a circular arc bump, subjected to
an M = 0:875 approach ®ow. The bump accelerates the ®ow, locally, to M = 1:4,
and the ®ow then returns to a subsonic state through a strong shock which causes
the boundary layer to separate. This is, therefore, a searching test for the ability of
turbulence models to represent shock{boundary-layer interaction.

A 180 £ 110 grid was used, with clustering applied around the shock and near
the wall, the y + value along the gridline closest to the wall being of the order of 0.5
throughout. Computational results obtained by Loyau et al . (1998) and Batten et al .
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(d) skin-friction lines.

(1999) for di¬erent models are compared in ­ gure 9 with experimental data. Several
NLEVMs and second-moment closure models feature in the comparisons, and are
designated as follows: WR, Wilcox & Rubesin (1980); CLS, Craft et al . (1997b); AL,
Apsley & Leschziner (1998); JH, Jakirlíc & Hanjalíc (1995); MCL, Craft & Launder
(1996), Batten et al . (1999); SST, Menter (1994), a linear model with a vorticity-
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Figure 9. Wall-pressure variations along cylindrical bump subjected to transonic ° ow with
shock-induced boundary-layer separation; predictions with two linear EVMs, three nonlinear
EVMs and two second-moment models.

sensitized form of c · (see ­ gure 5). The cubic AL model and the MCL second-
moment closure are seen to return a considerably more pronounced pressure-plateau
region than do other models, predicting a shock location which is fractionally too far
upstream. The SST (shear stress transport) model|essentially a linear EVM|gives
a performance very similar to the best nonlinear eddy-viscosity and second-moment
models, but this is due, in large measure, to the use of a vorticity-sensitized form of
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c · and a carefully crafted shear-stress limiter. Comparisons for velocity and shear-
stress pro­ les may be found in Batten et al . (1999) and Loyau et al . (1998) and are,
in terms of sensitivity to the shock, consistent with the results for the pressure.

(e) Fin{plate junction

In this ®ow, shown in ­ gure 10, a Mach 2 ®at-plate boundary layer collides
with the rounded normal ­ n, producing a complex shock{boundary-layer interaction
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and multiple horse-shoe vortices. Experimental data for surface pressure, velocity,
(LDA) skin-friction patterns and Reynolds stresses have been obtained by Barberis
& Molton (1995). While the geometry and ®ow are well controlled, uncertainties
arise because of a lack of detail in the measured boundary layer well upstream of
the ­ n (only its thickness was given) and the presence of leakage between the ­ n tip
and the upper wall of the wind tunnel. The latter poses some uncertainty about the
boundary conditions on the upper computational boundary, which is a virtual plane
parallel to, and well-removed from, the lower wall.

Computations have been performed by Batten et al . (1999) on an 80 £ 80 £ 70
C-type grid surrounding the ­ n, with the y + value closest to the wall being of the
order of 0.5. Several low-Re linear EVMs, Menter’s (1994) linear SST EVM and three
low-Re second-moment closures (Launder & Shima 1989; Jakirlíc & Hanjalíc 1995;
Batten et al . 1999), have been examined. A few results arising from the models of
Menter (1994), Jakirlíc & Hanjalíc (1995) and Batten et al . (1999) (denoted, as in the
previous case, by SST, JH and MCL, respectively) are given in ­ gure 10, and these
illustrate that only the second-moment closure is able to reproduce the multiple sep-
aration/reattachment structure ahead of the ­ n that is observed in the experiment,
although the patterns are not identical. All models tend to underestimate, some by a
substantial margin, the size of the separated region upstream of the ­ n. Indeed, di¬er-
ent variants of second-moment closure return signi­ cantly di¬erent results, and this
illustrates the often-observed high sensitivity of the performance of second-moment
models to the details of approximating the pressure{strain-interaction and dissipa-
tion processes. In common with the previous case, the linear SST EVM results, here
too, in pressure distributions that are as good as those returned by the second-
moment models. However, it must be noted again that the SST model is carefully
tuned and contains a highly in®uential limiter, which depresses the shear stress in
certain regions of the ®ow, thus enhancing separation and enlarging the size of sep-
arated zones. In contrast, second-moment closure aims to achieve agreement with
reality by increasing the level of generality and fundamental rigour of the equations
describing the physics of turbulence.

6. Concluding remarks

Much e¬ort has been put, over the past few years, into the construction, calibration
and validation of improved forms of second-moment closure and nonlinear eddy-
viscosity models. This is an especially di¯ cult area of CFD, and progress is much
slower than that on the numerical front. Di¯ culties with stable and accurate model
implementation, the ­ ne grids and high CPU resources required, the lack of suf-
­ ciently accurate and well-resolved data derived from well-controlled experiments,
and the small number of groups engaged and collaborating in advanced modelling
(especially that involving three-dimensional ®ows) make validation very challenging
and its outcome subject to much uncertainty.

There is no doubt that, from a fundamental point of view, second-moment closure
is superior to NLEVMs. This superiority is rooted, in large measure, in the exact
representation of stress generation, which involves an intricate interplay between all
stress and strain components. On the other hand, the need to model the in®uential
process of turbulence-energy redistribution and reduction of the shear component
in harmony with isotropization is, in practice, a potent source of variability in per-
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formance. Added to this, second-moment closure poses not inconsiderable numerical
challenges and entails relatively high computational costs.

NLEVMs have sprung from the desire to circumvent the complexities and numer-
ical di¯ culties associated with second-moment closure. While the nonlinear frag-
ments sensitize the models to normal-stress anisotropy and curvature strain, the
mechanisms by which this sensitivity is established are materially di¬erent from
the actual physical interactions which are represented by the exact stress-generation
terms in the Reynolds-stress-transport equations. These fundamental di¬erences are
accentuated by the fact that nonlinear models imply no causal relationship between
anisotropy and sensitivity to curvature. Moreover, the weak response of turbulence
energy to irrotational straining|in reality, again rooted in stress-production terms|
can only be captured by nonlinear models through a functional dependence of the
eddy-viscosity coe¯ cient, c · , on strain and vorticity invariants. The fact that mate-
rially di¬erent nonlinear forms arise from alternative approaches to their derivation,
and the extensive dependence of these models on calibration, are reasons for the
substantial variability in performance observed when the models are applied even to
relatively simple ®ows.

Notwithstanding the rather subdued view conveyed by the above remarks, the
considerable number of computational studies reported in the open literature justi-
­ es the overall observation that anisotropy-resolving closures o¬er not insubstantial
predictive advantages over simpler closures in complex strain ­ elds. In general, the
advantages in three-dimensional ®ow appear to be less pronounced than in two-
dimensional ones (at least in terms of the dynamic state). While this observation
might initially appear curious, a possible explanation may lie in the fact that tur-
bulent transport in three-dimensional ®ows tends to be less dominant, relative to
inviscid contributions, than in two-dimensional ones. This is linked to higher lev-
els of ®ow curvature present in many complex three-dimensional ®ows, with which
convective transport and pressure gradients are associated.
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